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Study of the Application of 

E lec t r i c  ProDulsion t o  %ace Missions 

Quarterly Progress Report No. 3 
Contract 50. IiASw-737 

SU?IIMA_sY 

/ a! -73 
Co2tract RASW-737 between the United Aircraf t  C!orporaf,ion Research 

Laboratories and NASA per ta ins  t o  an ana ly t ica l  evaluation of t he  pel-formance 
po ten t i a l  of e l e c t r i c  propifision systems using SNAP-8 and SNAP-50 power 
supplies f o r  primary propulsion of unmanned s c i e n t i f i c  and l o g i s t i c  space 
vehicles.  During the  first two quarters of t h i s  study, t he  appl icat ion of  
the  SNAP-50 power system t o  the  solar and Saturn probe missions, t he  Venus 
o r b i t e r  mission, and the  lunar  l o g i s t i c  supply operation was investigated.  
I n  a l l  of  these mission studies,  use of the Saturn I B  launcher was assumed. 

During the t h i r d  quarter,  t he  application o f  SXAP-50 t o  t he  Jup i t e r  
probe mission was considered, again assuming the  use of t he  Saturn I B  
launcher. Also, the sxudy of the  lmar l o g i s t i c  supply operation was 
extended t o  include the  use of the  Saturn V as the  lamcher .  For t h i s  
mission, a performance comparison of e l e c t r i c  propulsion with the  so l id-  
core nuclear rocke? vas made, and the r e su l t s  are presented i n  terms of 
launch r a t e  and weight lamched into ea r th  o r b i t  per  un i t  weight delivered 
t o  zhe lunar surface as functions of t h e  lunar supply r a t e .  & 

A-J 
The p e r f o m r c e  comparisons w5ich form the  bas is  of  these zozclusions 

a re  based 3ri the m e  of t h e  SXAP-50 w:tk a mercury-bc)mbardmecT ion th rus t e r  
acd a,r, aAvar,:ed metall ic-sor2 liuzlear recket foz t he  Jup i t e r  probe mission. 
FJr the  l-k?ar IogEstic sJpply operatloa, the r e s x l t s  a r e  based on the use 
o f  m d t i p i e  S ~ A P - ~ O ' J  coupled In para l le l  and a graphi te -wre  fiuclear rocket. 

1. L7or misslor, ttmes grea te r  than 620 days, g rea te r  payloads can be 
achieved f o r  tne JupiTer probe m x s i o n  by s i n g  a= e l e c t r i c  propulsion 
system w i t 9  a poverplant of 30 lb/kwe spez i f ic  ?eight than by using a 
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nuclear rocket of 800 see spec i f ic  impulse. 
pulsion i s  supel-for for mission times grea te r  than about 300 days. 

A t  10 Ib/kwe, e l e c t r i c  pro- 

L ‘  3 Elec t r i c  propds lon  reQuLres fewer Satxrc V lzmches per  m n t h  t o  
maintain a given supply r a t e  i n  the lunar  l o g i s t i c  supply operation than 
a re  required by the n.,:lear rocket 

3 .  I n  supplying t x o  payload del iver ies  over a powerplant l i f e t ime  of 
10,000 hr ,  the  e l e c t r i c  propulsion system provides grea te r  performance, i n  
terms o f  ear th  o r b i t a l  weight per  uni t  payload weight, thm a nuclear rocket 
o f  800 sec spec i f ic  impulse even up t o  a spec i f i c  powerpiant weight of 
approximately 4 0  lb/kwe. For three payload de l iver ies  i n  10,000 hr ,  
e l e c t r i c  propvilsior? i s  superior up t o  a spec i f i c  weight of about 25 lb/kwe. 

INTRODUCTIOB 

The backgromd of t h i s  study and the basic  assumptions under which it 
i s  being car r ied  out were presented i n  t he  two previous quarter ly  progress 
reports  (Refs. 1 and 2 ) .  
have been maintained i n  %he study duricg the pas t  quarter  except f o r  modifi- 
cations t o  the spec i f ic  ground rules of t h e  lunar  l o g i s t i c  supply operation. 
These changes and t h e i r  e f f e c t  on the r e su l t s  are discussed i n  the  pre- 
s e r L t a t i m  of t he  r e s u l t s  s 

The same general assumptions and ground rules 

JUPITER PROSE MISSION 

Definit ion of  Mission and Assumptions 

E lec t r i c  I Propulsion 
I_-_ 

It i s  a s s m e 3  +,hat a 28,000 lb e l e c t r i c a l l y  propelled space vehicle 
i s  launched i l l to a 300 n m i  c i rcu lar  ear th  s a t e l l i t e  o r b i t  by a Saturn I B  
lauczher., 
st,rong gravi ta t iona l  f i e l d  of the  eartii azld then a he l iocent r ic  t r ans fe r  
t r a j e z t o q -  cor?sist irg o f  a2 i295ialpowered phase followed by a coast t o  
Jup i t e r .  ‘The orbirs of  ear th  and Jupite-. a re  assuned cf rcu lar  and coplanar 
-i i s  a s s n ~ d  t,is+, tl?e v e i i z l e  operates a t  zonst,ant spec i f i c  impulse ( i e e o ,  
eogstaLT t h m s s )  5ut thaf, the +,hmst may be tur red  of f  a1Z:gether. The 
constant-thrust  ae7e iera t ic r  plus optimum-coast he l iocec t r i c  t r a j ec to ry  
da:a were obta;neu from %f. 3 .  

T2e space vehicle follows a s p i r a l  escape t-.ajectory i r _  the  

-c 
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Nuclear Rocket Propds ion  

The mission and the  i n i t i a l  vehicle gross weight f o r  nuclear rocket 
~ r c p u h i m  a re  exactly the  s m e  as those f o r  e l e c t r i c  propds lon .  The 
t r a r s f e r  consis ts  of an escape hyperbola a t  earth,  with a perigee of  
300 n m5 a l t i t ude ,  followed by a hel iocentr ic  e l l i p t i c  or hyperbolic 
t r ans fe r  

A so-called 1s-stage advanced tungsten-core nuclear rocket vehicle i s  
employed for t h i s  comparison of e l e c t r i c  and nuclear rocket propulsion. 
.This vehicle,  which uses l i qu id  hydrogen as the  propellant,  i s  the  same as 
?hat discussed i n  Fef. 4. 
nuclear  rocke+, engine i s  assumed t o  have a weight of 1000 l b  plus  1 l b  f o r  
every 45 lb of thrus t  a t  a spec i f ic  impulse o f  800 sec.  
take-off from the  i n i t i a l  ear th  orb i t ,  a propellant tank i s  je t t i soned  
a f t e r  ha l f  the  reqzired veloci ty  chasge i s  achieved. 
y o n d e s  the th rus t  t o  achieve the remaining veloci ty  change using pro- 
p e l l a m  contained i n  a second tark, 

Not under development a t  present, the  advanced 

I n  the powered 

The same engine 

Results 

For electric-propulsion systems, payload f r ac t ion  as a function of 
mission t i m e  f o r  given values o f  power conversion eff ic iency (7) and 
spec i f ic  lmpulse (I) i s  presented i n  Figs. 1 through 9 .  
applicable p lo t s  are presented f o r  assumed powerplant spec i f i c  weights of  
lo2 20, and 30 l’C/kve and powerplant f rac t ions  of 0.20, 0.25, and 0.30. 
For any spec i f i c  t h rus t e r  there  would be a cha rac t e r i s t i c  var ia t ion  of 
power conversion eff ic iency y n t h  spec i f ic  impulse. Q-picai var ia t ions are 
presezlted i n  Figo 10 f o r  a mercury-bonbardment ion engine and an a rc - j e t .  
Any s m h  var ia t ion  can be p lo t ted  on the  generalized gr ids  of Figs. 1 
through 9 to obtain payload fract ion as a function of mission t i m e  f o r  
t h a t  p a r t i  c d a r  t h rus t e r  I 

These generally 

Ais0 fo r  a given th-mster and powerplact spec i f i c  weight, optimum 
values of  powerplant fractiori  arzd spec i f ic  impulse could be determined by 
superlnposirg tQe p l o t s  af payload versm missioi time for the three  power- 
piariT f rac t ions .  
poss2ble payload a t  aEy gEven mssion time. 
f r a e t l o r  has beer fomd  t o  be irl the v i c i n i t y  of 0.25 and i s  nearly invariant  
d t,h .spe,if: c Fo-Jerplart ve;gklt and misslor, e 

The envelope of there curves would give the  m a x i m u m  
The optimum value of powerplant 

SGperimpsed orl Figs,  1 t2;rough 9 a re  payload f r a c t i o c  curves f o r  t he  

The L r i t i a l  thrust-to-weight r a t i o  i s  0 - 5  with 

1 12-stage so i - ,d -mre  riljclear rocket f o r  general comparison - i t b  t he  e l e c t r i c  
propilzicrl performarce. 
a s s m e i  vauies of spez i f iz  LmpLlse o f  700, 800, and 9 0  sec.  To obtain a 
speci fi 1 compsri 53r, of elec+,ri c propdls im and nuclear rocket performance, 
the grids ci Figs 22 5, a22 8 arid t h e  eff ic iency var ia t ion  o f  Pig. 10 f o r  

3 
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t he  mercury-bombardment ion engine were employed t o  produce the  e l e c t r i c -  
propulsion payload-fraction curves of  Fig. 11. This f igure  shows t h a t  
e i t h e r  t he  SNAP-50 powerplant lifezime must be grea te r  than 10,000 h r  (417 
days) o r  i t s  spec i f ic  weight must be  below the 15 to 20 lb/kwe range i n  
order  f o r  e l e c t r i c  propulsion t o  be superior t o  solid-core nuclear rocket 
propulsion f o r  t h i s  mission. 

LUNAR MGISTIC SUPPLY OPEBATION 

Analysis 

Since t h i s  operation has 
a de ta i led  description i s  not 
results (cos t  per  u n i t  weight 
operation based on the  Saturn 

been previously described i n  detai l  i n  R e f .  2, 
repeated here.  I n  R e f .  2 spec i f i c  cost  
o f  payload) vere presented f o r  a lunar  supply 
I and Saturn I B  launchers. An operation 

using the  Saturn V as the  launcher has been s tudied t h i s  quarter, using 
e s sen t i a l ly  the  sane method of analysis as t h a t  presented i n  Appendix I of 
R e f .  2. Two of the basic  ground rules,  however, have been changed. A f t e r  
t h e  useful l i fe t ime of t h e  e l e c t r i c  propulsion u n i t  has been reached, it 
i s  l e f t  i n  lunar  o r b i t  r a the r  than being returned t o  ear th  o r b i t  t o  save 
the  f u e l  required f o r  the  re turn  t r i p .  A g rea te r  payload may be car r ied  
on t h e  las t  one-my t r i p  than t h a t  which i s  car r ied  on the  round-trips. 

A second change i n  ground rules assumes t h a t  t h e  payload would be 
placed on the  lmar surface instead of only i n  lunar  o r b i t .  For the  
purpose of deorbit ing the  payloads t o  the  surface, a chemical rocket 
using storable Np04 - and aerozine with a spec i f i c  impulse of  312 sec i s  
employed both fo r  the  e l e c t r i c  propulsion and the  nuclear rocket systems. 
Storable  propellant i s  used instead of cryogenic hydrogen and oxygen t o  
avoid boi l -of f  losses .  The nuclear rocket vehicle could land d i r e c t l y  
on the  lunar  surface but  i n  so doing could present a possibly unacceptable 
rad ia t ion  hazard. These changes i n  ground rules require  some modification 
of t h e  analysis  but not enough t o  warrant i t s  presentat ion i n  t h i s  progress 
repor t  

E l e c t r i c  Propds ion  

The e l e c t r i c a l l y  propelled vehicles a re  again considered t o  be com- 
posed o f  two moddes: one containing the propulsion system and a s t ruc ture  
frame, and the  other  containing the propellant,  tadsage, and payload. I n  
the analysis  the  i n i t i a l  gross weigh+, o f  each vehicle i s  considered t o  be 
the  same f o r  every t r i p .  
I s  launched separately by one o r  more Saturn V ' s .  
mercury-bombardment ion th rus t e r  are considered f o r  the  operation The 
assumed var ia t ions  of power conversion eff ic iency with spec i f i c  impulse f o r  
the  tvo t h rus t e r s  a r e  sho-m i n  Fig. 10, The a rc - j e t  curve i s  taken from 
R e f .  5, am3 the  ion-engine curve i s  taken from R e f .  6. 

Each module of t he  e l e c t r i c a l l y  propelled vehicle 
Both an a r c - j e t  and a 

4 
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The results f o r  t he  lunar 
18, which show spec i f ic  supply 

mission a r e  presented i n  Figs. 12 through 
r a t e  (i .e. , payload weight per  day divided 

by i n i t i a l  vehicle gross weight) as a function of powerplant f rac t ion  and 
the  ixmber of payload de l iver ies  per vehicle.  A set  of these curves i s  
presented f o r  the mercury-bombardment ion th rus t e r  f o r  both 10,000 h r  and 
15,000 h r  powerplant lifetime a t  powerplant spec i f i c  weights of 10, 20, 
and 30 lb/kwe. Because t h e  a rc- je t  has proven i tself  i n f e r i o r  t o  the  ion 
t h r u s t e r  f o r  t h i s  mission, only a s ingle  s e t  of curves, f o r  a powerplant 
lifetime of 10,000 h r  and a powerplant spec i f i c  weight of 20 lb/kwe, are 
presented. 

Any point  on the  curves of Figs. 12 through 18 represents an operating 
point  having compatible values of powerplant lifetime, t r i p  t i m e ,  number 
of payload del iver ies ,  specif ic  impulse, and powerplant f rac t ion .  The only 
r e s t r i c t i o n  on the  use o f  these p lo ts  i s  t h a t  t he  allowable powerplant 
f rac t ions  must be such t h a t  each of t he  two modules of t h e  vehicle requires 
t he  f u l l  launching capacity of an in t eg ra l  number of Saturn V I S .  The 
powerplant f rac t ion  t o  be used i n  Figs. 12 through 18 i s  obtained by 
subtract ing the  s t ruc ture  plus thrus te r  f r ac t ion  (assumed t o  be 0.04) 
from the  f rac t ion  of t o t a l  vehicle represented by the  f i rs t  module. 
For example, one Saturn V launching t h e  first module and a second Saturn V 
launching t h e  second module r e su l t s  i n  a case f o r  which t h e  powerplant 
f r ac t ion  i s  0.460. 
f o r  the  second r e su l t s  i n  a powerplant f r ac t ion  of 0.293, e t c .  

The use of one Saturn V f o r  t h e  first module and two 

The first combination t h a t  was invest igated was a s ingle  Saturn V 
f o r  each o f  t he  modules. 
corresponding powerplant f rac t ion  o f  0.460 is  too high, s ince it results 
i n  operation well past  the  peak of maximum supply r a t e  f o r  any number of 
payload de l iver ies  per  vehicle for both the  mercury-bombardment ion 
engine and the a rc - j e t .  Therefore another choice was made involving one 
Saturn V t o  launch the  f i r s t  module and two others  t o  launch the  second 
(powerplant f rac t ion  of 0.293). Although t h i s  combination possibly 
increases t h e  d i f f i c u l t y  of the rendezvous problem and a l so  requires  a 
l a rge r  vehicle, the  increase i n  performance would probably warrant t h e  
acceptance of these addi t ional  problems. 

As can be seen i n  Figs. 12 through 18, the  

An a l t e rna te  scheme which was not s tudied may have poten t ia l .  This 
scheme would involve the  i n i t i a l  launch of both modules with a s ingle  
Saturn V, and t o  launch each successive second module a l so  with a 
Saturn V. 
the r e s u l t s  of  the present study cannot be applied.  

Since t h i s  scheme resu l t s  i n  d i f f e ren t  i n i t i a l  gross weights, 

A s  can be seen from Fig. 18 a powerplant f r ac t ion  of 0.293 i s  s t i l l  
too  l a rge  f o r  e f f i c i e n t  operation o f  t he  a rc - j e t .  
competitive with the  mercury-bombardment ion engine, it i s  necessary t o  
increase the  number of Saturn V’s to  f ive,  with one launching t h e  first 

To make the  a r c - j e t  

5 
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module and t h e  other  four launching the  second module. 
requirements of these l a rge  vehicles are la rge  (around 10 Mwe a t  a power- 
p l an t  spec i f ic  weight of 20 lb/kwe), it i s  assumed t h a t  t h i s  power can be 
supplled by coupling f ive  SNAP-50 powerplants i n  p a r a l l e l .  If the  
packaging problem i s  t o c  severe, e i the r  a 10 Mwe powerplant o r  a smaller 
vehicle would have t o  be used. 

Although the  power 

One fu r the r  comment regarding Figs. 12 through 18 may be useful .  The 
supply r a t e s  of these f igures  are based on the  use of t he  s torab le  pro- 
pe l l an t  N20k-aerozine f o r  deorbiting. 
lunar  surface t o  weight i n  lunar  o rb i t  f o r  t h i s  propellant i s  approximately 
0.533. The corresponding supply r a t e  t o  the  lunar  o r b i t  can be determined 
by multiplying the  supply rate t o  the surface by 1/0.533. 

The r a t i o  of payload weight on the  

Nuclear Rocket ProDulsion 

Unlike the  powerplant of t he  e l e c t r i c a l l y  propelled vehicle, t he  
nuclear rocket engine weight i s  a small pa r t  of t h e  t o t a l  vehicle weight. 
For t h i s  mission a NERVA-type graphite-core nuclear rocket i s  employed 
which has an assumed weight o f  4500 l b  plus 1 lb f o r  every 45 l b  of 
rocket t h r u s t  a t  a spec i f ic  impulse of 800 see. 

I n i t i a l l y  the  whole vehicle i s  launched by a Saturn V i n to  tne 
standard 300 n m i  c i r cu la r  o r b i t .  For the  next lunar  t r i p ,  t he  Saturn V 
would launch the  same weight of payload, propellant,  and tankage i n t o  an 
o r b i t  of s l i g h t l y  higher energy due t o  the  f a c t  t h a t  t he  engine and 
s t ruc tu re  frame are already i n  orb i t .  
vehicle, a l a rge r  payload can be carried,  s ince no propellant would be 
required f o r  the re turn  t r i p .  
there  are th ree  d i f fe ren t  s i z e s  of payload carr ied.  

On the  f i n a l  one-way t r i p  of t he  

Thus, during the  l i f e  of one vehicle, 

It i s  necessary t o  determine t h e  bes t  values of round-trip time and 
vehicle thrust-to-%eight r a t i o  f o r  the nuclear vehicles.  
putat ions have been done f o r  a spec i f ic  impulse of 800 sec, and the  
results a r e  assumed t o  hold f o r  other values of spec i f i c  impulse. 
good f igure  o f  meri+, f o r  performance i n  t h i s  mission i s  the  weight 
launched in to  eartvh o r b i t  per  u n i t  payload yeight delivered t o  the lunar  
surface.  It i s  desirable  t o  minimize t h i s  f igure  of m e r i t .  This quant i ty  
i s  a t  a mirimum value at a thrust-to-weight r a t i o  of around 0.4 f o r  near ly  
a l l  values of round-trip time. It is  very insens i t ive  t o  thrust-to-weight 
r a t i o  around the  ainimum, s o  a value of 0.5 was chosen i n  order t h a t  
gravity-nv losses  may be neglected in  the  calculat ions without loss o f  
accuracy. 

These com- 

A 

A t  agy thrus:-to-veight r a t io ,  the  figure of 
a round-trip time corresponding t o  minimum-energy 

6 

merit  i s  minimum f o r  
t r ans fe r s .  This t i m e  
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is about 10-5 days. Therefore, r e su l t s  are presented f o r  a round-trip t i m e  
of 10.5 days and a thrast-to-geight r a t i o  o f  0.5. It should be emphasized 
that, t he  10.5 day round-trip time minimizes only the  performance f igure  of 
r”,erit, whereas a shor te r  rolmd-trip t1cle w0LL.d a in ix i ze  the  spec i f i c  cost  
o f  t he  operation. 
of performance, the  longer t i m e  i s  employed. Results of a minimum spec i f i c  
cost  comparison w i l l  be presented i n  the  f i n d  report .  

Since the  comparison i s  being made here on the  bas i s  

Results 

The required Saturn V launch r a t e  (number of launches pe r  month) i s  
shown i n  Fig. 19 as a m c t i o n  of the  supply r a t e  t o  the  lunar  surface for 
both e l e c t r i c  and nuclear-rocket propulsion. Presented i n  t h e  f igure  are 
r e s u l t s  f o r  the mercury-bombardment ion engine and the  a r c - j e t  f o r  a 
powerplant spec i f ic  weight of 20 lb/kwe and a powerplant l i fe t ime of 
10,000 hr ,  and f o r  various numbers o f  payload de l iver ies  per  vehicle.  
The corresponding values of t r i p  t i m e  and spec i f i c  impulse for t he  
e l e c t r i c  propulsion systems presented i n  t h i s  and the  following f igures  
a re  shown i n  Table I, 

For comparison, t he  same resu l t s  f o r  the  nuclear-rocket system are 
shown i n  Figs. 19 through 23 f o r  values of spec i f ic  impulse of 600, 700, 
800, and 900 sec.  
system requires a lower launch r a t e  than the  nuclear-rocket system f o r  
both two and three payload del iver ies  per  vehicle.  
other  hand, cannot compete even f o r  t he  lowest number of payload de l iver ies  
cons 1 dere d . 

It i s  seen t h a t  t h e  mercury-bombardment ion engine 

The a rc - j e t ,  on the  

Figure 20 i s  e f f e r e n t  from Fig. 19 only i n  t h a t  t he  powerplant l i f e -  
The result i s  t h a t  a lower launch rate i s  t i m e  i s  increased t o  15,000 hr .  

required for more payload del iver ies  per  vehicle.  

Figares 21 a d  22 show the  same results of required Saturn V launch 
rate versus supply sate f o r  a powerplant spec i f i c  weight of 10 lb/kwe. 
Here a l l  of  the  e l e c t r i c  propulsion curves ind ica te  a lower required 
launch rate t h a i  a rg  of t he  nuclear rocket curves. 

Finally,  Fig. 23 presents the same r e s u l t s  f o r  a powerplant spec i f ic  
aeight  of  30 lb/kve an~d f o r  powerplant l i fe t imes of 10,000 h r  and l5,OOO h r .  
For 10,099 h r  toe  e l e c t r i c  propulsior_ system i s  superior f o r  tvo payload 
del ivzr ies ,  while a t  15,000 h r  it i s  superior f o r  both txo and f,hree pay- 
l o a d  cieiiveries - 

Iri Figs.  24 ar-d 25 are p lo t ted  powerplant spec i f ic  weight and nuclear 
rocket spec i f i c  impulse against  the r a t i o  of weight launched i n t o  ea r th  
o r b i t  per  u n i t  weight delivered t o  the  lunar  surface.  This f igure  of 
merit,  as mentioce? previously, i s  a good indica tor  of system performance. 
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These two f igures  c l ea r ly  show the r e l a t i v e  m e r i t s  of e l e c t r i c  and nuclear- 
rocket propulsion f o r  this mission. It i s  seen t h a t  e l e c t r i c  propulsion 
with a mercury-bombardment ion thrus te r  i s  superior  i f  a powerplant spec i f i c  
weight of 30 lb/kwe o r  l e s s  can be achieved and i f  the  long round-trip t i m e s  
of t he  order of 100 t o  200 days can be to le ra ted .  

PFWECTED WORK 

During the  las t  three-month phase of the  contract, specifLC cost  
results f o r  t he  lunar  supply operation using Saturn V launchers, which 
had not been completed at  the  time of  wri t ing of t h e  present progress 
report ,  w i l l  be reported. 

A study -will be launched t o  determine the  app l i cab i l i t y  of the  pre- 
sently-envisioned SNAP-8 powerplant t o  the  following missions : a 24-hr 
satel l i te ,  a lunar mapping s a t e l l i t e ,  an out-of-the-ecliptic probe, and 
a s o l a r  probe. 
involving d i r ec t  thermal heating i n  the  ion izer  o f  cesium contact ion 
thrus te rs ,  will be invest igated in  connection with the  SNAP-8 system. 

An idea f o r  improved e l e c t r i c  propulsor efficiency, 

A draft of t h e  f i n a l  technical report  will be wri t ten during the  
next quarter .  

REPORTING NEW TECHNOLOGY 

There are no developments t o  repor t  under the  requirements of t he  
Reporticg of  New Technology clause i n  the  contract .  
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